AEiXTo User Manual

AEiXTo vV2.8.8.0
1 March 2008

Kostas Ntonas
kntonas@gmail.com

AEiXTo User Manual Version 2.8.8.0

Table of Contents

Table of Contents

Table Of CONLENLS ...ccueeieeiieeiieninensnensseensnnssnecsesssaesssessssesssnssssesssessssessasssssssssassssessanes i
Table Of FIGUIES....ccovvviiicnivnnicnissnrissssnrnccsssssnscssnss ii
AETXTO cuveuvieniiiisnecsnicnnssecssnsncssncssessesssesssssseesstssasssessssssssssessssssasssssssssssessessssssasssssssssses 1
Embedded Web Browser Control...........cocooiiiiiiiiiiiiiiiiiecceeeeee e 2
MYDOM TTEE STIUCTUTE.....eeiiiiiiiiiiieiiie ettt ettt sbee e sbee e 2
TAG FIOIINE ..ottt et e et e et e e esaeeennaeeensaeeenseeennnes 3
Creating the Patternoooiiiiiiiiiieie ettt 4
Configuring the Patterncoooiiiiiiiiiiicce e 7
FOllowing NeXt LINKS.......cooiiiiiiiiiieiieie ettt 8
ReguIar EXPIESSIONScccuviieiiiieeiiieeiiee et cieeesiee et e e e sveeeaee e eeennaeeenneeeesneeenenes 9
Extraction Rule EXECULION.......cc.eiiiiiiiiiiiiiiiiirieieceeeeeeee e 11
Virtual Pattern ROOt......c.c.ooiiiiiiiiii s 14
Successive Optional NOAESeeeuieriiiiiiiiiieieee e 16
Pattern Matching AIOTItRM..........cccviiiiiiieiece e 17
AULO MOGC.....eiiiiiiieciet ettt 19
Auto Fill and Submit FOrmcccooiiiiiiiiieeee e 21
Extraction Rule Maintenancecceeviieiieiieeiiienie et 22
OUtPULt t0 RSS FIlE .ot 23
SIDING OTAET ...ttt ettt et et e st e e e e 24
SHALISTICS. .ttt ettt ettt ettt ettt ettt et e st e b e e 25

AEiXTo User Manual i Version 2.8.8.0

Table of Figures

Table of Figures

Figure 1: DEIXTO GUI ...cooiiiiiiiiiiecetcee et 1
Figure 2: Problematic subtree due to tags.......ccceovuieiiiiiiiiiiniiiieeeeeee 3
Figure 3: Subtree after Simplification..........cccoocueviiiiiniiniiiiiieceeeeeee e 3
Figure 4: Scrollable list with checkboxes for tags to 1gnore..........cccccvveevvieecieenneeenee. 4
Figure 5: Buttons to rebuild and simplify myDOM...........cccooouiiiiiiiiiiniiniieieeee 4
Figure 6: Highlight browser modecoccooiiiiiiiiiiniiee e 4
Figure 7: Information about the selected myDOM elementccceverveeriinieniennnnne 5
Figure 8: Part of a tree eXtraction rule...........cooeeiiiiiiiniiiiiiiiceee e 5
Figure 9: Creation of an extraction rule through myDOMcccoociiiiiiiiniiennne, 6
Figure 10: Possible rule node states on the node’s local menu.............ccccoeiiininninnn 7
Figure 11: Control elements for following IInks..........ccoceeviriiniiiinininiiiicceienee 9
Figure 12: Typical link StruCture........c.coiiiiiiiiiiiiiiicieeeeeee e 9
Figure 13: Dialog window for entering a regular eXpression...........coeceeveereeenieenneenn. 10
Figure 14: Rule execution BUttoncccoiiiiiiiiiiiiiiiicieieeee e 11
Figure 15: Stop execution BULtONcceriiriiiiiiiniieicetcceeeceee e 11
Figure 16: EXtraction pattern trEEVIEWcecueeruiiriiieniienieeniee sttt 11
Figure 17: Node with a user specified label...........cc.cocoeviiniiiiniiniiinceee, 12
Figure 18: Results of execution of a sample rule..........coooeeniiiiiiiiiiiniiiee, 12
Figure 19: Control elements for output to file........ccccoveriiniiiiniiniiinieeee, 13
Figure 20: Part of a sample XML output file........ccccecvieriiieniiiiiiieeeeeeceeeee 13
Figure 21: Control elements for max number of hits and native URL 14
Figure 22: Buttons for adding and removing pattern node levels.........c..ccoceeieniies 14
Figure 23: Headers from a sample news WebSIte..........cocuevirvieriineeiienienenienieieeenen 15
Figure 24: News header StrUCtUIE.coceeiiiiiiiniiiiiiiiceieee e 15
Figure 25: Pattern for sports news headersccceeverieniiiiniiniiiinicnecceecenen 15
Figure 26: Record with optional data fields...........cocceoniiiiiiniiies 16
Figure 27: Rule subtree with successive optional nodes..........ccceeeevuerieneericnienennne. 16
Figure 28: Example pattern and target tre€ceeevueerieriieenienieinienieeeeseeeeeseene 19
Figure 29: Buttons to open and SAVe @ WIAPPETcc.eevverueerierrienieenieeienienieeeesieenieennes 20
Figure 30: Defining target URLS 0f @ WIapperc.cccovveiiiiiiiniiiieiiieeiceeees 20
Figure 31: Button for execution of a loaded Wrapperc..cccceeeeveevenicnennicnecneenne. 21
Figure 32: Controls for auto fill and submit form...........coccooiiiiiiiiines 22
Figure 33: Tune bUuttonccoovviiiiiiiiiieiee et 22
Figure 34: Sub-elements of channel element of RSS output file..........ccccooiiiiniins 23
Figure 35:Assignment of RSS label to a rule node...........ccccoveriiiiiiiniininicnicene. 24
Figure 36: Dialog box for sibling order definition...........cccceeveviereeienienieeneeee, 24
Figure 37: Statistics for execution of a sample Wrappercocceeeverienernieneeneenne. 25

AEiXTo User Manual il Version 2.8.8.0

AEiXTo

AEiXTo

AEiXTo (or DEiXTo) is a powerful web data extraction tool. It allows users to
create highly accurate extraction rules (wrappers), which describe what pieces of data
to extract from a web site. It provides a robust arsenal of features and a friendly
graphical user interface (GUI) that is used to build, test, fine-tune, save, maintain and
execute extraction rules. It achieves high precision and recall in a wide spectrum of
cases. This guide describes the functionality of DEiXTo.

A few words about the name of the tool: DEiXTo is an acronym for Data
Extraction Tool. First of all, A is the equivalent of D in Greek. Now, perhaps you are
wondering what this ‘i’ character is all about. Well, in Greek AEIXTO (pron. dechto)
is the imperative form of point at, which is what the DEiXTo user does inside a web
browser window when he specifies items of interest by using the mouse.

Figure 1 illustrates the major components of the application window, which
will be described in detail in the following sections. Notice that via a horizontal and a

vertical splitter, the user can change the size of certain regions.

[+ Highliphi Browsss Mode: mm '—E—l

AL ? [2sefond | 8 Bemacad

Proat o | Duiut | EbeneerdIndo | PS5 Chaesd | Log | Sististios | S repshois | aboul

(] Ervabis bti Fages Cuopaling Wi Crsving Clapie
Tl 00 Bt o thas HT AL bk i Pl

LEEEEE &

i

@ @ e "n 2ot GM
LEE Wl Mrabeey of Hiw |11
Forwes: | Tewed [ief] | |) Eonbnc] Estrecd wscnwfs rdivs UAL

Figure 1: DEiXTo GUI

AEiXTo User Manual 1

Version 2.8.8.0

AEiXTo

Embedded Web Browser Control

Probably the most important component of DEiXTo is the embedded web
browser control that is located in the region 1 of the window (Figure 1). If the user
wishes to extract data from a website, the first thing to do is to enter its URL to the
address bar and press the ‘Browse’ button. It should be noted that the browser can also
retrieve local files from within one’s own computer via the schema file://path. In case
the browser fails to fetch a page or the timeout, which is set at 5 minutes, elapses, then
the appropriate actions are made and relevant error messages are displayed.
Moreover, the user can go ‘Back’ and ‘Forward’ via ‘Alt+Left Arrow’ and ‘Alt+Right
Arrow’ respectively.

It should be noted that the tool cannot deal with frame based pages. This is
due to the fact that the existence of frames in a page makes its manipulation difficult
and requires special treatment because each frame is a different html document.
Thankfully, most times this is not the case. That means that the tool’s usefulness is

not seriously damaged by not handling such cases.

myDOM Tree Structure

DEiXTo is based on the W3C Document Object Model (DOM)
Recommendation and thus on the tree representation of an HTML document that
reflects its HTML tag hierarchy. DOM is an interface that allows programs and scripts
to dynamically access and update the content, structure and style of web documents. It
was considered necessary to display the DOM tree of the fetched page inside the
application window (Figure 1, region 2). From now on, this tree data structure will be
called myDOM. The myDOM tree is created when the page is fetched and rendered in
the web browser and is built via a classical depth first algorithm and the API that
DOM provides.

For each myDOM node, various, useful information is kept. The data which
can be extracted is: for <A> elements the href attribute, for elements the src
attribute, for FORM and INPUT elements the name attribute, for TEXT nodes their text
content and for the other html nodes their inner text. It is also possible to extract the

source code of an HTML element.

AEiXTo User Manual 2 Version 2.8.8.0

AEiXTo

Tag Filtering

The ability to ignore html nodes while building myDOM proved to be a very helpful
utility. This feature was implemented because sometimes certain types of elements
encumber the identification of record instances as well as the extraction of the desired
data. This will be better understood with the following example. In a typical Google
result page there is a serious problem with the bold font of some words. HTML
elements force a text string to split in several parts and as a consequence records
include structures such as that in Figure 2. Moreover each record has a variable

number of words in bold.

= FOMT
TExT
=I-B
TEXT
TExT
=I-B
TEXT
=B
TEXT
TEXT
=B
TEXT
TEXT
—-B
TEXT
=I-B
TEXT
BR

Figure 2: Problematic subtree due to tags

These difficulties can be overcome though. This is done via the simplification
method which ignores user specified types of nodes and merges their inner text with
the text content of neighbour text nodes. For our example, removing while

building myDOM, transforms the subtree above into that represented in Figure 3.

= FONT
TEXT
BR

Figure 3: Subtree after simplification

The usefulness of tag filtering is obvious and its advantages are important. The
user should first select the tags he wants to ignore on the relevant checkbox list in the

Project Info tab (Figure 4) in the region 5 of the window (Figure 1).

AEiXTo User Manual 3 Version 2.8.8.0

AEiXTo

Ignore HTML T ags

v| <B»
<STROMG>
v
<Eb>
<

<MOER> [v]

SEEIRIT

r

Figure 4: Scrollable list with checkboxes for tags to ignore

What should do next is press the ‘Simplify’ button (Figure 5), which is in
region 2 of the window. The user can rebuild the original myDOM tree just by

pressing the relevant button next to that of simplification.

Figure 5: Buttons to rebuild and simplify myDOM

Creating the Pattern

Once a page is fetched and it is rendered in the browser window, the user then has to
describe the structure of the desired data, thus create a pattern. For this purpose, the
browser was enriched with a highlight mode, so that page areas that correspond to
visible HTML elements are highlighted when the cursor passes over them. So, if the
mouse is over the HTML document and the highlight browser mode is enabled, then

the element under mouse is highlighted, if this is possible. The Figure 6 is

characteristic.
| Pt B BN ﬂ GHiHey —
|
Mokl Conrmct Carth Fiopdilaan R 4 wpis
: B ook e |m
! Fafigmanen s N
| i U - e
P N v F ovew
f T -
Plopsionn remiy T sl
ol
I 5
I Fowpire SEPOL-NAZG LN
EFTEE LA RIS TG LA e
e
— | i LA R
Turhicr
Frame THEL-E 16 Pk BERMRISE
¥ Mopilean Beml I wpda
M m
=] Toahba bogeli aue|
1L L Satpbbn AT18-IHI i
|e .
LI | W w40 MDA D 1L B P b= ot BT TP ey

Figure 6: Highlight browser mode

AEiXTo User Manual 4 Version 2.8.8.0

AEiXTo

Moreover, in the Element Info tab, in region 5 of Figure 1, useful information
is displayed for the selected element (Figure 7), such as the outer HTML of the

element, data which can be extracted from it and its absolute path in the document.

Project Info | Output| Element Info | RSS Channel | Log || Statistics | &bout

HTML text of the selected element

<H1 id=price_1725018>315.35 £</H1>
</F0 |~
<DV clagz=productline_in:
<DV class=productliine_»
<DV clagz=blink s> <SMALL» Mive Skroutz yuo nepuoodrepas SuvoatdTr
<DV class=productline_r><SPaM class=rlinks: <& href="/shopslist?id=14":HardShop< /A < /5Pl

b

< >

Content of the selected element [which can be extracted)

PANASOMIC LUME- DMC-F<30EF BLACK Wnpuakss 31535 €
[ive Skroutz o nepurodtapes SuvaTdThTES
HardShop

Fegular expression of the selected element

HTHML path of the selected elemant
HTML[1LBODY[1 00T DI2). DIV2L.DNTT L. DIT4]

Figure 7: Information about the selected myDOM element

The user can easily and quickly create an instance of data under interest by
selecting the relevant option from the popup menu of the HTML element whose
subtree corresponds to a representative record instance. Then, a pattern tree is created,
which is displayed in the area 4 of the application window. This tree structure is the
myDOM subtree rooted at the selected element. Figure 8 shows the pattern that
corresponds to the element highlighted in Figure 6. Each node has a name, either a
HTML tag or TEXT. The root node is displayed in bold. Note that a pattern by default

extracts the contents of the TEXT nodes of each found instance.

= = Dy -
= O
= & SPAN
& FFT

& WE
21 TEXT
= o O
B TE=T
= e A,
= TEXT
o GFEK

B TE=T

S b -

Figure 8: Part of a tree extraction rule

AEiXTo User Manual 5 Version 2.8.8.0

AEiXTo

This data structure serves a dual purpose. It is the working pattern and at the
same time a record instance. Therefore, when the user selects a rule node, the area of
the page that corresponds to the selected node is highlighted. This facilitates the fine
tuning of the rule, so as to maximize its efficiency.

In some cases, though, it is not possible to highlight an element. For example,
non visible elements cannot be selected via the mouse on the browser window. Then,
the user should use myDOM tree to create the pattern. He can select the relevant
option from the local menu of the myDOM node under interest. This is shown in
Figure 9.

Additionally, a sync mode was implemented between myDOM and the
browser. When a myDOM node is selected, the corresponding area in the browser

window is highlighted and vice versa.

1.0 -~
= Oy

TET
- O .
Livm an wssdliary ratance
FFUT
= DR
= A
M
= D
TE-T
= DR
TEXT
=]
= A
TE-T

< =111

Figure 9: Creation of an extraction rule through myDOM

For cases that it is not possible to highlight an element by using the mouse, the
usual practice is to highlight an element near the one we want to “catch”, disable the
highlight browser mode through the popup menu and then select the myDOM node
that really interests you.

The creation of efficient extraction rules requires the careful selection of a
representative record instance, which will be used as a pattern to identify all record
instances. A major advantage of DEiXTo is the visualization of the whole wrapper
development procedure which makes the creation of even complex extraction rules
quite easy and quick.

The tool takes advantage of the fact that semantically related items exhibit
consistency in presentation style and subsequently in HTML structure. To minimize

the fragility of scraping, it is strongly recommended that the user should use as little

AEiXTo User Manual 6 Version 2.8.8.0

AEiXTo

boundary data as possible. Boundary data is the fluff around the actual data one

wants.

Configuring the Pattern

Almost always, a just created pattern does not capture all record instances the
user wants. In several cases, there are multiple record instances on page which present
small or bigger structural variations. These variations are usually due to missing
fields. Moreover, the user is interested in specific bits of information that a record
instance contains, thus in particular data fields.

DEiXTo allows users to define the role of each pattern node. The user can
select among six different node states, each of which expresses whether the node is
required or optional in a record instance and whether the user wishes any data from it.

The user can select a node state through the local node menu (Figure 10).

[E Match and Extract Content

[Match and Extract Source

& Match Node

2 Don't care about this node

2] match Made - oPTIONAL

n Match and Extract - GPTIOMAL

Figure 10: Possible rule node states on the node’s local menu

The possible states are:

. checked: this node is required in a record instance and the user wants
information the node contains. It is an output variable. If it is a TEXT node,
the data extracted is the inner text, for links (<a>) the data under interest is
the nref attribute, for images the src attribute and for FORM and INPUT
elements their name attribute. For the rest HTML nodes their inner text is
extracted. In case a node has a regular expression, then the string matched
with the target string is extracted. In case parentheses are contained in the
regular expression, then the string extracted is the string created by
merging the substrings of the string matched with the parts of the target
expression in parentheses.

= [checkedsource: this HTML node is required in a record instance and
the user wants the source code of the corresponding element (outer

HTML). Such a node is an output variable.

AEiXTo User Manual 7 Version 2.8.8.0

AEiXTo

= grayed: it is required in a record instance but the user does not want
any content from it.
= unchecked: not interested in this node. It could be completely deleted

but it is kept for possible future use.

. E grayed implied: this node is optional in an instance and the user
does not care to extract anything from it. Consequently, if this node has
children, its subtree is optional independently from the states of the rest
nodes belonging to the subtree.

- | checked implied: this node is optional in an instance but if it matches
with a myDOM node, then its data is extracted as described in checked
state. It is an output variable. If this node has children, its subtree is
optional independently from the states of the rest nodes belonging to the

subtree.

The user can permanently delete a tree node and subsequently its subtree. As
the user modifies the pattern, there is the ability to keep snapshots of the current
working pattern, which are kept in the Snapshots tab. Of course, the user can restore a
snapshot and make it a working pattern through its local menu. When the user
removes a node, then automatically a snapshot is created.

As discussed before, it is not that simple to locate all record instances on the
first shot, so there is a need to configure the pattern and carefully select node states.
Very helpful is the auxiliary tree structure in which the user can put a record instance
that the pattern missed. This is performed the same way as the pattern is created. This
structure is exactly next to the working pattern, so there can be direct side-by-side
comparison between the two trees and thus the user can find out why the pattern did
not capture the specific instance. In conclusion, this auxiliary structure facilitates the

creation and tuning of well engineered extraction rules.

Following Next Links

A typical result page of a search engine or a price comparison engine contains
multiple record instances. Very often, the number of search results is large, therefore
the records span among multiple pages. The wrappers built with DEiXTo support

performing a sequence of page fetches via following ‘Next’ links. Actually, a

AEiXTo User Manual 8 Version 2.8.8.0

AEiXTo

wrapper visits all the target pages and gathers all the record instances found on them.
The mechanism DEiXTo uses is quite simple but efficient for most cases. The user
can enable multiple pages crawling just by checking the relevant checkbox in Project
Info tab (Figure 11). DEiXTo identifies the link to follow by using its inner text or its
title attribute.

tAulti Page Crawling
Enable Multi Page Crawling Max Crawling Depth: 5 =

Test ar title of the HTRL link to fallow: MHext

Figure 11: Control elements for following links

The user can enter the name or the title or part (prefix) of it, so as to recognize
the desired link among others. The comparison between the string entered by user and
the inner text or title of a link is case insensitive. The user can also define the
maximum crawling depth, which expresses how many successive pages will be

visited at most.

Regular Expressions

Several times, it is very useful to define constraints upon the content of some
pattern nodes, so as to ease the location of the desired records. For example, the user
can define that a myDOM node, in order to match with a pattern node, should begin
with a prefix or contain a specified string. Other times, the user wants to isolate a part
of the text contained in a node. These can be achieved via regular expressions. A
regular expression is a template to be matched against a string. To better understand
the usefulness of regular expressions in DEiXTo, two simple examples follow.
Suppose that a user wishes the extraction of the href attribute of a ‘Next’ link. Given
that most links have exactly the same structure, the pattern in Figure 12 is not

sufficient as it returns almost all links of the page.

- [EA
o TEXT

Figure 12: Typical link structure

If the user, however, enters a regular expression for the TEXT node, such as

‘Next’, then the pattern returns only the desired URL.

AEiXTo User Manual 9 Version 2.8.8.0

AEiXTo

Another example that highlights the use of regular expressions derives from
cases where the user wants to isolate specific parts of text data. Let’s assume that the
user wishes the integer value of a string ‘from $249.98’ contained in a TEXT node.
What he should do is enter a regular expression such as \'$ (\d+).

It should be noted that the use of regular expressions applies to both TEXT as
well as HTML pattern nodes. The regular expression assignment is realized via the
relevant option in the local node menu. In the window that opens, the user can select a
pre-built regular expression or enter a new one (Figure 13). To isolate one or more
parts of a target string, the user should use parentheses. There is also the ability to
evaluate inversely a regular expression, thus using the not operator of the given
regular expression. For inverse evaluation, the user should check the relevant
checkbox. The nodes having a regular expression are displayed underlined. To
remove a regular expression and restore a node to its initial state, the user should

select the relevant node menu option.

Pattemns | Suntax

Pattern Dezcription Exarnple

“b Beqgin with 'b' “foo matches 'foo' foobar', faoBhkg'
e End with ‘&' food matches 'foo','barfoo’, fgjgffoo’

sth Cantaing "sth' foo matches 'foo', ‘abfacef’, foolgSa'
" Exact match with 'w' “foobar$ matches only string 'foobar'
W Price in dollars matches 50§, $1000

£ Frice in eura rmatches 50€, 1000

W, P M) Extract just the price ratches $1,252.80
- Matches everypthing

Please give reqular expression: |k

[Perfarm inverse evaluation

L o 0K J [XCancell

Figure 13: Dialog window for entering a regular expression

Note that regular expressions provide a mechanism for partial mathematical
constraints. For example the expression [7-9]\d\d matches all integer values

ranging from 700 to 999. This could be really helpful in cases with product pages.

AEiXTo User Manual 10 Version 2.8.8.0

AEiXTo

Extraction Rule Execution

To execute an extraction rule on the fetched page, the user should press the button

displayed in Figure 14, located in the region 4 of the application.

L]

Figure 14: Rule execution button

In some cases, usually when the execution includes a sequence of several page
fetches, it is useful to be able to stop the execution. This is done by pressing the

button illustrated in Figure 15 in region 2 of the application.

Figure 15: Stop execution button

When the user commands execution, a copy of the rule is created, without the
unchecked nodes, and represented in the tree structure of the Project Info tab (Figure
16). This copy, whose nodes are empty of data, constitutes the pattern. Specifically, a
pattern match effort is conducted on myDOM tree as to identify record instances. For

this purpose all myDOM nodes are examined against the pattern.

Estraction Pattern

- @ DIV ~
=@ DIV 1
--@ SPEN |
@ |INPUT]
=@ DIV
= A
@ MG
=@ DIy

o TEseT |

Figure 16: Extraction pattern treeview

If the multiple pages crawling mode is enabled, the procedure continues with
next pages so as to gather all record instances. The pattern matching algorithm is
described thoroughly later. When a match is found, which means a myDOM subtree
matched with the pattern, then a part of its data is captured by the output variables of
the rule (the nodes in checked or checkedSource or checked implied state).
The default variable names are VARX (e.g. VAR1, VAR2, VAR3, etc). At this point, the
executor collects the values of the output variables and creates an output record. In

case a myDOM subtree fails to match, the current contents of the pattern are

AEiXTo User Manual 11 Version 2.8.8.0

AEiXTo

discarded and a new effort begins with the next myDOM node. The pattern matching
procedure terminates when all myDOM nodes are checked against the pattern. The
output results are printed in a list component in the Output tab, which is in region 5.
The number of its columns is equal to the number of output variables and the number
of rows is equal to the size of the result set. The column names are the same as the
output variable names, thus VARX by default. However, the user can change the label
of an output variable through the local pattern node menu and assign one of his own,
thus providing semantics for the data extracted. The label entered by the user is
combined with the node name and the character ‘:” is used as a delimiter, as illustrated
in Figure 17. Figure 18 displays sample output results of an execution of an extraction

rule for a price comparison engine.

[E] TE=T:title

Figure 17: Node with a user specified label

Moreover, the selection of a record in the output list, highlights, if possible,
the corresponding record instance on the browser. This is useful for the location of
record instances that the pattern missed. Also, double click on an output record opens
the page from which it was extracted in a new Internet Explorer windows. This is
meaningful when the wrapper executes the extraction rule on several pages and
subsequently the output records derive from many different addresses. This facilitates

the result verification.

Project Info | Output | Element Info | RSS Channel | Log Statistics
mociel price shop
Wodak EasyShare w510 266.00 € Haterelos
Mikon DA0 6.0 420.00 € Adorama
CLYRPUS “Tmju:] 700 padpn Mepodia. .. 195.00 € Pixmania (.fr)
CANON EOS 4000 + T1500€ Asikidiz
Canon PovwerShot 53 1S - NEAY 369.00 € Katerelos
SONY Cyher-shot DSC-HE padpn Nopa... 382.00€ Pixmania (.fr)
PAMASOMIC Lumix DMC-FZT podpn Nxp... 306,00 € Piximanis (.1
WHipIokr ooToypagis drges - Penta... 93051 € Megamarket
Mikaon DE0 Body 569.00 € Katerelos
Sony DSC-H2 F700€ Katerelos
CANCON ECS 4000 + garog EF-S 16-55 F35.00€ Pixmaniz [.fr)
Kaonica Minofta ALUTO METER % F MET ... F34.00 € Adorama
Olympus FE 180 MEWY 15500 € Katerelos
Mikon 040 Set AF-5 DX 18-55/3.5-5.. 595.00 € Technix:.ar
Mikon D80 dSLR (10.2 MP) + ok (.. 109900 € Nhoimo
JWC Everio GZ-MFE05 3xCCD 929.00€ Nhoima
Pertax 67 I| AE PRISM FINCER B7 5. 453300 € Adarama
Canon PowerShot AG40 -MNEWY- F20.00€ Katerelos
SOMNY Alpke DELR-A100 - Modpr Nop... E52.00 € Pixmanis [.fr)
Sony DCR-HC23E Brerzokdpspe binilty ... 2F300€ Met-electric
Extraction Completed: 20 results!]

Figure 18: Results of execution of a sample rule

AEiXTo User Manual 12 Version 2.8.8.0

AEiXTo

The output results can be exported to a file. The supported formats are: tab
delimited text, XML and RSS. The two latter make use of the output variable names,
thus the semantic labels entered by user. So, each label given by the user is used as an
XML element type. Since XML has become the lingua franca of the Web, data
extracted with DEiXTo and stored in XML can be manipulated and processed in
various interesting and meaningful ways. To export extracted data to a file, the user
should first select format, name (absolute or relative file path) and mode (overwrite or
append) and then execute the rule. The relevant controls are in Project Info tab and

illustrated in Figure 19.

Cutput File Cutput Mode
M ame: %) Overwrite

Format; | Test [*.kat] ™|) Append

Figure 19: Control elements for output to file

It should be noted that the output files have utf8 encoding without regard to
target pages’ encoding. If the user selected for example to extract the results of Figure

18 to an XML file, then a file would be produced like that in Figure 20.

<7uml version="1.0" encoding="UTF-8" 7=
- =WrapperResultss
- <item:=
<model>Kodak EasyShare Ye610</model=
<price>266.00 €</price:=
<shop=Katerelos</shop>
<fitems
- <item:
zmodel=Nikon D50 6.0</model=
<price=420.00 €</prices
=shop=Adoramas</shop:=
<fitems

Figure 20: Part of a sample XML output file

In cases of tab delimited or XML output file, there is the capability to extract
also the native URL of each record. This can be achieved via the relevant checkbox in
Project Info. Moreover, the user can define max number of results, which can be used
as a termination condition of the pattern matching algorithm. The relevant control

elements are shown in Figure 21.

AEiXTo User Manual 13 Version 2.8.8.0

AEiXTo

Options
M ax Mumber of Hits: |0 =

w

[Extract record's native URL

Figure 21: Control elements for max number of hits and native URL

During rule execution, the application is in running mode and all browser
events caused by user are disabled until the execution completes. For instance, the
user cannot follow a hyperlink; neither can display a popup menu. This is useful for
cases including following ‘Next’ links and is done to guarantee smooth execution. If

not in running mode, the user can use the embedded browser as usual.

Virtual Pattern Root

In certain cases, the pattern structure can be quite simple and thus wrongfully returns
too many results because this structure is very popular in page. This means that the
pattern should be stricter, thus some constraints should be defined. Regular
expressions are really helpful but sometime they are simply not adequate. To solve
this problem, there is a need to describe the environment (or neighborhood) of the
pattern root node.

In DEiXTo this is achieved via inserting in the pattern tree some direct
ancestors (father, father of father, etc) of the current pattern root and perhaps adding
also their siblings. The user can ascend and descend node levels with the buttons
shown in Figure 22 that are located in region 4 of the window. The user can also add
siblings to an ancestor node of the initial root through the local node menu. Note that

the insertion of a sibling node, inserts its entire subtree.

Figure 22: Buttons for adding and removing pattern node levels

For instance, in a sample news website (Figure 23), the headers have exactly
the same presentation style and are organized by category in tables. Suppose that the

user desires the sport news (‘AOAHTIEMOZY’ in Greek).

AEiXTo User Manual 14 Version 2.8.8.0

NMOAITIKH

Mivyk novyk o1 suliliveg
peTafd Aovke - Tomoupidn
H unu\m]u'n Tu'lTuuplﬁn Kal
n kovTpa pe Tov KIATidn

H UI1I]'||'EIIJ ﬁluﬁpuun evic
uuu.\uvuu pe KEpdoC 5 EK.

OIKONOMIA

. I'quuKEun.\uc oTn NB and
T0 kufapd unspyiaxo
péTLIND

* Nuoxarivéc nepimohisc

® 01 evahAokTikoi anféonacay
10 26% Tnc oTaBephc

AEiXTo

EUpO)

| EAAASA TEXNEZ

® 30cMYPOZ ITA ® And Ta... ToOfAa oTov
AMPIGEATPA noAmopo

* Tipf oTov MNpoedpo
* F1o «nepipever va yivouw
poucEio

. I'IETpunu.\Euug Kai xnumu
oe MiTpu K Beocoubovikn

®* H Aradnpio ABpvov

KOZIMOZ AOAHTIEMOZ

[l 1
I
* ialwu avriTaonc * Tpinovro Byauévo ano...
* KuB£pvnon und nieon... | Ahralap
)
|
1

* Ev kupivo... * To tpuf nou dvaws
(pwTIEC...

To <<D’EUTD'UI>> nétafs pe...

Figure 23: Headers from a sample news website

Obviously, all the headers share the same HTML structure which is shown in

Figure 24, which encumbers the isolation and extraction of the desired information.

= @ TD
5@ A
3 TEXT

Figure 24: News header structure

To deal with this problem, there is a need to specify the environment of the
pattern root. Using the features discussed above, the user can easily build the pattern
shown in Figure 25. This pattern returns only the desired pieces of data. It should be
noted that the pattern uses the name of the wanted news category as a landmark,

‘AOAHTIEMOZY’ for our example, which is described via a regular expression.

= < TABLE
=« TBODY
=« TR
=« TH
- A
@ TEXT
=« TR
=« TD
(= [E] Acrnare_url
[E] TEXT:Lithe

Figure 25: Pattern for sports news headers

As shown in Figure 25, the root of the pattern is the TABLE node while the
initial root was the Tp node which is in bold. The subtree rooted at Tp represents a

record instance and hence this is the pattern searched in myDOM. The nodes above

AEiXTo User Manual 15 Version 2.8.8.0

AEiXTo

TD are environment constraints. While execution, when a myDOM subtree matches
with the subtree rooted at TD, then it is checked for its neighborhood. Only if all
constraints are fulfilled, there is a hit.

We call this technique virtual root method, as the root of the tree searched in
myDOM is not the real pattern root node but the root of the subtree corresponding to a

record instance.

Successive Optional Nodes

While pattern matching, once the algorithm cannot match an optional node, it
continues with its next sibling, if this exists. However, in a few cases, some
successive optional nodes go always together because they belong to a group. So, it is
useful to be able to handle multiple pattern nodes as a group. This means that in case
an optional node is not found, a certain number of following successive nodes has to
be skipped. This is achieved via the FSON (Following Successive Optional Nodes)
parameter contained in an optional node. The user can assign a value to it through the
node popup menu.

Consider the record in Figure 26. Suppose that the director and actors HTML
segments are optional in the contrary of the movie title which is required in a record

instance.

Twin Peaks - The First Season
Director: Dawid Lynch
Aetors: hEdchen Amick hichael Ontkean Kiyle haclachlan

Detailed product information

Figure 26: Record with optional data fields

In the pattern a user would build, he should pose the nodes corresponding to
director and actors as optional as in Figure 27. The first TExT node contains the

regular expression ‘Director’ while the second has the regular expression ‘actors’.

= 5Pan

= [F) s
@ TEXT

= ,.f_-.‘
[&E] TEXT:director

(7IBR

= 6 ey

@ TEXT

,.f-.‘

[E] TEXT: 1zt actor

Figure 27: Rule subtree with successive optional nodes

AEiXTo User Manual 16 Version 2.8.8.0

AEiXTo

However, in an instance without given director, the first span would fail to
match but the following A node would match with the myDOM node a of the first
actor, which is wrong since the specific pattern 2 node goes with the nodes, span and
BR, belonging to the director.

Let’s assume that the user gives the Fson of the director span the value of 2.
Now, if span is not matched, the algorithm will jump to the span of actors, since it
skips the two following successive nodes (a and BR). As a result, the problem

described above is dealt with.

Pattern Matching Algorithm

The algorithm used for pattern matching is really effective in most cases. An
extraction rule describes the structure a record instance should have. However, some
times this is not enough due to the often occurrence of the specified structure in the
target document (e.g. we want the sport headlines on a news site, but all headlines
have the same structure). The mechanism we deployed to address this problem is to
take into account the neighbourhood / ancestors of the root node of the record
instance. Therefore, a DEiXTo generated extraction rule can have a virtual root and
consequently is made up of two parts. Most times though, the virtual root coincides
with the real root. Let R be the tree extraction rule and vroot the virtual root of R. Let
T1 be the subtree of R rooted at the vroot node, while T2 is R-T1, which consists of
the nodes above vroot. T2 is the neighborhood of vroot. In case the vroot and the
real root are the same node, then T2 is empty.

To identify instances of information under interest, we examine every node of
the myDOM data structure of the fetched page. To be more specific, at each cycle we
try to match the pattern over the subtree of the node under examination. For every
single myDOM node, a new pattern matching effort begins. Every node in a tree can
be seen as the root node of the subtree rooted at that node. So, let node be the
myDOM node examined and S the subtree rooted at this node. The algorithm consists
of two main steps. In the first step we check if S matches T1 and in the second the
neighborhood / environment of node is checked for match with T2. If both checks are
successful, all constraints are fulfilled then there is a hit, which means that a record

instance has been detected, so its data is extracted.

AEiXTo User Manual 17 Version 2.8.8.0

AEiXTo

The basic idea behind the algorithm is that in order to match two nodes, they
must have the same tag and their children must match as well. So, the pattern
matching problem becomes a depth first recursive problem. Main attributes of the
algorithm is the support of missing nodes in the target tree and the existence of
optional nodes in the pattern. The procedure of matching a node of s with a node P of
T1 is based upon first occurrence. Thus, in a cycle the algorithm parses the nodes of
the level of S and stops the search of a match for P, when it founds the first node of s
that matches P. It should be noted that the pattern matching for a node continues from
where the last match occurred.

Consequently, when a myDOM node matches with a pattern node, that means
that their children (and recursively their whole subtrees) have also matched already.
When a match occurs, then the content of the pattern node fills with the data of the
corresponding myDOM node. Thus, in case the whole pattern tree matches, then all
the nodes (except optional (and their subtrees) perhaps) have obtained data, some of
which are those under interest and so they are extracted.

In the case a required pattern node does not match, then the procedure fails
and a new pattern matching cycle begins with the next myDOM node. If a match is
not found for an optional node, then its subtree remains empty of data and the
algorithm continues with its next sibling node, if there is one. The matching effort
continues from the node for which the last match occurred. In the case the optional
group handling is enabled then the algorithm continues with the node following the
optional group, if there is one.

If the pattern tree matches, which means that a record instance is found, then
the extraction of the specified fields of data is performed and the pattern empties
again so as to begin a new pattern matching effort with the next myDOM node.

These above described will be better understood with an example. The next
figure demonstrates the pattern tree on the left and a sample target myDOM subtree
on the right. We assume that all nodes of the pattern are required besides 0, which is
optional and its optional group size is 1 (just itself). The virtual root of the pattern is X
and the pieces of data we want to extract are held by K, N and F. Assume that the
myDOM element under examination is X. The X nodes have the same tag name but in
order to match, their children should first match. In our case, this is done although

there is no O in the myDOM subtree, since it is optional. Note that T matches with the

AEiXTo User Manual 18 Version 2.8.8.0

AEiXTo

second T myDOM node because the first instance of a T node has no children.
Obviously, all the required pattern nodes that are x descendants match with the
corresponding myDOM nodes. Given that X nodes match, then their ancestor nodes
above them should be matched. Finally, all pattern nodes match, whereupon there is a
hit. So, items of data contained in K, N and F nodes are extracted. After that happens, a
new tree matching effort will start with another myDOM node examined and so the

procedure keeps on.

Figure 28: Example pattern and target tree

Auto Mode

Once the user builds an extraction rule that has efficient performance and extracts the
desired data, he can save it for future use and execute it at will. Therefore, he does not
have to create it over and over again from scratch for the same pages under interest.

All the necessary wrapper information is stored in an xML encoded file, so that
the user can load it and run it. These files are named wrapper project files and have
wpf extension, while they follow the syntax rules that the DTD (wpf.dtd) poses for
their validity check. To open and save wpf files, there are relevant buttons (Figure 29)
on the Project Info tab. It should be noted that in order to open a wpf, there must be
the wpf.dtd in the same directory with the wpf.

AEiXTo User Manual 19 Version 2.8.8.0

AEiXTo

Figure 29: Buttons to open and save a wrapper

A wrapper can be executed for multiple urLs. This is meaningful for pages of
the same structure and type, for example pages of the same website. The wrapper
visits each one of them, applies the pattern to identify record instances, gathers
records and presents the results unified in a single result set. For this purpose, the user
can define as input either a list of URLs or a text file containing target URLSs.

The specification of the target pages is achieved via relevant controls (Figure
30) on the Project Info tab. Note that when a user visits a page, then its address is
automatically inserted in the list at the region 1 of the Figure 30, discarding its

previous contents first.

Target URLs

Figure 30: Defining target URLs of a wrapper

The user, through the ‘+’ button and the relevant text field, shown in regions 3
and 2 respectively, can add URLs. Moreover, by selecting a URL of the list and
pressing ‘-’, the user can remove URLs. The button on region 5 opens a dialog box
that allows the user to open a file and insert the URLs that it contains in the list. The
text field at region 4 of the image represents the path of the specified file. The user
can enter directly in this text field the absolute or relative path of the file. It should be
noted that in this case, no URL insertion is done. Thus, this is useful only when
saving a wrapper. Moreover, when the user wishes to save a project, he should select
just one of the ways of specifying the target URLs (list or file).

To execute a saved wrapper, the user should load the project file via the
relevant button (open) and press the button Go! (Figure 31). In case the user wishes to

stop the execution, he can press the button in Figure 15 in region 2 of the application.

AEiXTo User Manual 20 Version 2.8.8.0

AEiXTo

Figure 31: Button for execution of a loaded wrapper

When a wpf is loaded, then the relevant control elements get those values
specified in the corresponding XML elements of the project file. The pattern is built
and the target addresses are inserted in the relevant list. Double click on an address
contained in the list opens the specific page in a new Internet Explorer window. In
case some types of nodes should be ignored, then tag filtering procedure is enabled
and the relevant checkboxes are checked. Moreover, the controls for output file get
the appropriate values, as well as the controls for following ‘Next’ links.

Special interest has the capability to define multiple targets via a file because
it makes possible to combine different wrappers and to use the output of one as input
to the other. For example, suppose that a wrapper (wl) extracts from one or more
pages of a web site the UrRLs to which the really desired information is located (e.g.
product detail pages) and stores them in a text file. A second wrapper (w2) can use as
targets the UrRLs w1l extracted to a file. So, w2 visits all these pages and extracts the
actual data under interest. This way, a kind of wrapper cooperation is supported,
which is quite important.

It should be noted that DEiXTo can also be executed from command line with
parameter the wpf file that contains all the necessary information for the specific run.
So, it is possible to set wrappers to run automatically by making use of a job

scheduler, such as Scheduled Tasks in Windows XP.

Auto Fill and Submit Form

DEiXTo provides the ability (in auto mode) to automatically fill a form, submit it and
execute a wrapper on search result pages. Specifically, the procedure is: the search
field is filled in with the user term, it is submitted, the first result page is fetched, the
record instances are extracted and the procedure goes on with next pages, since the
wrapper can follow ‘Next’ links.

This is really helpful for data extraction from pages of search engines, e-shops
and price comparison engines. The user should define the form name, the search field

name and his search term(s). The two first are optional. If the user enters only the

AEiXTo User Manual 21 Version 2.8.8.0

AEiXTo

search term, then the first form element is selected and its first field is filled. This

information is provided by the user on Project Info, as shown in Figure 32.

Subrmit Form
Enable Auto-Fill

form_name
zearch_field_name

Lizeq_query

Figure 32: Controls for auto fill and submit form
So, the user is not forced to provide URLs for certain search terms as input to
the wrapper, e.g. the first result page for the X product type. He can enter manually the
website home page as target URL and fill the relevant fields described previously.
Each time he wants to extract data from this website, independently of the query, he

should execute the same wrapper changing only the search keyword.

Extraction Rule Maintenance

Once the user builds a rule, he can then save it and run it at will. However, due to
layout changes of the target web site, a wrapper could stop working as expected. It is
also possible that the user needs have changed or the user wishes to modify the
pattern for some reason. So, there is a maintenance issue. Of course, the goal is to be
able to easily modify and fine tune the pattern so as the user does not have to build a
new rule from scratch. Thankfully, most sites are not doing huge revamps often.

The pattern has no data and the tree structure in Project Info is read-only.
What we want is to find a record instance that matches with the pattern and put it in
the record instance tree component, so that the user can edit it and adapt it according
to the new needs. This is achieved via the tuning feature.

When user presses the Tune button (Figure 33) on Project Info tab, then the
browser retrieves the target URL and searches in the myDOM tree for a full match

with the pattern, so that a record instance is created, which will have data in all nodes.

Figure 33: Tune button

The procedure of finding a full match stops either when this is found or when

all target URLSs are visited and there is no match. In the record instance identified, the

AEiXTo User Manual 22 Version 2.8.8.0

AEiXTo

user can make the necessary changes and configurations to improve the precision and
the efficiency of this wrapper. In case, the layout of a site has changed largely, there is
a possibility not to be able to find a match. If a match is not found, then no rule-

instance is produced and a relevant message is displayed.

Output to RSS File

DEiXTo can produce RSS files for those sites that have their own RSS feeds. The
item elements of channel are created form data extracted from record instances
identified. In the RSS Channel tab in region 5 of the application the user can define
the values of the sub-elements of the channel element of the RSS output file (Figure
34). The sub-element title gets automatically the value “AEiXTo: page title”, except

the user enters his own title.

Project Info | Output | Element Info | RS Channel | Lag Statigtics | About
Label Walue Drescription Example
itle AEPTo: Sciencelire.. The name of the cha.. Gollpstate.com Mew. ..
link, http:/fnews.cad auth... The URL tothe HT .. hittpe /Ao gqoupstat.
description AERTogererated R... Phrase or sentence ... The latest news from...
language en-Us The language the ch... en-uz
copyright auth Copyright notice for c... Copyright 2002, Spar...
managingk ditor nbazzil Email address for per... geoi@herald.com [G...
webhd azter nbazzil Email address for per... betty@herald. com (B...
publ ate The publication date ... Sat, OF Sep 2002 00...
lagtBuildD ate The last time the con... Sat, OF Sep 2002 04...
categony Specify one or more ... <categom:Mewspap...
generatar A string indicating th... MightylnHouze Cont...
docs A URL that pointz to ... httpe//blogs. law. hary. .
Ll ttl stands for time ba i <Rl B0 At
1ating The PICS rating for t...
skipHours A kint for agareqator....
skipD ays A kint for agareqator....

nbazzili

Figure 34: Sub-elements of channel element of RSS output file
The user can assign an RSS label to each node of the pattern, as shown in
Figure 35. He can choose between RSS elements: title, author, description, link and
pubDate. In case the user has not assigned a ‘link’ label to a node of those extracted,
then automatically a link element is added in each ‘item’ element, which has the value
of the address of the page from which the record derived. To execute an extraction
rule generating a RSS feed, it is required that the pattern contains a node that has a

checked or checked implied state and has a RssTitle or RssDescription label.

AEiXTo User Manual 23 Version 2.8.8.0

AEiXTo

o
- [E Makch and Extract Content

[Z] Match and Extract Source
2@ U@ match Mode

=«
E
E
Enter a Fegular Expression
@H e
EnterfRemove a label ¥ML Label
Popular =ML Labels ¥
M| kitle
Enter sibling order
=~ inki
Remaove sibling order Eseription
£ author
Add Previous Sibling 3 ik,
Add Next Sibling £ pubbDats
> Remove Label

Figure 35:Assignment of RSS label to a rule node

Sibling Order

Until now, according to the algorithm description, pattern matching is based on the
order of node occurrence but not on sibling order. However, in some cases, it is useful
that the user can define the sibling order of a node. This is done through a relevant
option from the local node menu. In the window that opens (Figure 36), the user can
provide mathematical expressions of type K*i+C, where C is the start index, K is the

step and i is an integer greater than or equal to (>) 0.

Sibling Order Dialog 1

Care about gibling order

Fleasze enter start index 0

kH

Fleaze enter the step value |2

l o 0K I ’xl:ancell

Figure 36: Dialog box for sibling order definition
It should be noted that the first child’s sibling order is 0. If the user wants a

constant sibling order N, he can then give value 0 to step and N to start. So, if the user
would like a pattern node to match with myDOM nodes with even sibling order,
0,2,4,6,.., he should give to the start index the value 0 and to step the value 2. A

sample example of this function would be the extraction of odd or even search results.

AEiXTo User Manual 24 Version 2.8.8.0

AEiXTo

Statistics

In Statistics tab in region 5 of the application windows, there are provided some
metrics concerning the execution time and the system performance (Figure 37).
Specifically, if the statistics checkbox on the same tab is checked, then the metrics
measured are:

= Network time: time needed to fetch a page and fully render it in the browser.

= Preparation time: time needed to build the myDOM tree of a page and the

necessary data structures.

= Number of HTML elements on a page.

= Number of myDOM nodes of a page.

= Number of nodes in an extraction rule.

= Number of record instances identified in a page.

= Total extraction time for the desired data of a page.

= Average extraction time per record.

Project Infa | Output | Element Infa | BSS Channel | Log Statistics | About
M etric Walue ~
MHumber of nodes in pattern 18
Metwork, Time: hitp:#feve, google. ar/ 00;00:00.077
Preparation Time 000000063
MHumber of Elerents in page &0
Mumber of nodes in my DOM tree 78
Metwork, Time: http:/fwiww, google, gr/zearc.,.. 000000438
Preparation Time 00:00:00, 295
MHumber of Elements in page 344
Mumber of nodes inmy DOM tree 392
Mumber of recards in page 10
Awerage Extraction Time per Record 00:00:00.002
Total Extraction Time for page 00:00:00.032
Metwork, Time: http:/fwiw, google, gr/zearc.,.. 000000, 406
Preparation Time 000000, 281
MHumber of Elements in page 342
Mumber of nodes inmy DOM tree 393
Mumber of recards in page 10
Awerage Extraction Time per Record 00:00:00.003
Total Extraction Time for page 000000031
Metwork, Time: http:/fwiww, google, grdzearc.,.. 00:00:00.797
Preparation Time 00:00:00, 295
MHumber of Elements in page 355
Mumber of nodes inmy DOM tree 418
Mumber of recards in page 10
Awerage Extraction Time per Record 00:00:00.002 W

Enable statistics

Figure 37: Statistics for execution of a sample wrapper

AEiXTo User Manual 25 Version 2.8.8.0

